
Contents
 Introduction

 Symmetric-key cryptography
o Block ciphers
o Symmetric-key algorithms
o Cipher block modes
o Stream cipher

 Public-key cryptography
o RSA
o Diffie-Hellman
o ECC
o Digital signature
o Public key Infrastructure

 Cryptographic hash function
o Attack complexity
o Hash Function algorithm

 Integrity and Authentication
o Message authentication code
o GCM
o Digital signature

 Key establishment
o server-based
o Public-key based
o Key agreement (Diffie-Hellman)

Public Key Cryptography

Limitation of symmetric key
Key distribution problem

o How can keys be exchanged secretly?
Too many symmetric keys

o For n users, each user should keep n-1 keys and in total
n(n+1)/2 keys are required.

Alice and Bob may cheat each other.
o Can be used for non-repudiation

Public Key Cryptography
 Two keys

o Each user generates two keys: public key and private key
o Each user lets others know its own public key.
o At key generation time, two keys are computed.

K+

(public key)
K-

(private key)

Uses of Public Key Crypto
 Encryption

o Suppose we encrypt M with Bob’s public key
o Bob’s private key can decrypt to recover M

 Digital Signature
o Sign by encrypting with your private key
o Anyone can verify signature by decrypting with sender’s public

key
o Like a handwritten signature, but way better…

 Key exchange
o We will talk about it later.

How to build public key crypto
 Based on “trap door one-way function”

o “One-way” means easy to compute in one direction, but hard to
compute in other direction

o One-way function f(x)
 Computing y=f(x) is computationally easy.
 Computing x=f-1(y) is computationally infeasible.

o “Trap door” used to create key pairs

3 kinds of public key crypto
There are 3 kinds of mathematically hard one-way

functions on which the public key crypto are based.
o Factoring integers
 RSA

o Discrete Logarithm
 Diffie-Hellman

o Elliptic curve: generalized discrete log
 ECDH, ECDSA

RSA

RSA
 Diffie and Hellman published the idea of the public key

crypto in 1976.
 The RSA crypto was published by Rivest, Shamir, and

Adleman (MIT) in 1977, and Clifford Cocks (GCHQ),
independently,

 So far, RSA is the most widely used the public key cypto
although ECC is gaining attention recently.

Factoring integers
 Let p and q be two large prime numbers
Compute N = pq
 but, to find p and q from N such that N=pq for large

enough p and q is computationally very hard problem.

Encryption and decryption
 Public key K+=(N,e)
 Private key K-= d
Encryption y=EK+ (x) = xe mod N
Decryption x=DK-(y) = yd mod N

keys generation algorithm
At the setup time, the public and private keys are
computed as follows:

1. Choose two large prime numbers
2. Compute N=p∙q
3. Compute φ(n)=(p-1)(q-1)
4. Choose e ∈{1,2,3,…, φ(n)-1} such that

gcd(e, φ(n)) = 1
5. Compute d such that

d∙e=1 mod φ(n)
6. Return K+=(N,e) and K-= d

RSA
 Message M is treated as a number
 To encrypt M we compute

C = Me mod N
 To decrypt ciphertext C compute

M = Cd mod N
 Recall that e and N are public
 If Trudy can factor N=pq, she can use e to easily find d

since ed = 1 mod (p1)(q1)
 Factoring the modulus breaks RSA

o Is the factoring the only way to break RSA?

Does RSA Really Work?
 Given C = Me mod N we must show

M = Cd mod N = Med mod N
 We’ll use Euler’s Theorem:

If x is relatively prime to n then x(n) = 1 mod n
 Facts:

1) ed = 1 mod (p 1)(q 1)
2) By definition of “mod”, ed = k(p 1)(q 1) + 1
3) (N) = (p 1)(q 1)

 Then ed 1 = k(p 1)(q 1) = k(N)
 Finally, Med = M(ed 1) + 1 = MMed 1 = MMk(N) =

M(M(N))k mod N = M1k mod N = M mod N

Simple RSA Example
Bob

1. Select large primes p=11, q=3
2. N=pq=33
3. φ(n)=(p − 1)(q − 1) = 20
4. Choose e=3 (relatively prime to 20)
5. Find d=7 such that ed=1 mod 20

K+ = (33,3)

Alice
Message x=8

Y= xe mod 33 = 83 = 512 = 17 mod 33
Y=17

x= yd mod N = 177 = 410,338,673
= 12,434,505 33 + 8 = 8 mod 33

K-=7

More Efficient RSA (1)
 Modular exponentiation example

o 520 = 95367431640625 = 25 mod 35

 A better way: repeated squaring
o 20 = 10100 base 2
o (1, 10, 101, 1010, 10100) = (1, 2, 5, 10, 20)
o Note that 2 = 1 2, 5 = 2 2 + 1, 10 = 2 5, 20 = 2 10
o 51= 5 mod 35
o 52= (51)2 = 52 = 25 mod 35
o 55= (52)2 51 = 252 5 = 3125 = 10 mod 35
o 510 = (55)2 = 102 = 100 = 30 mod 35
o 520 = (510)2 = 302 = 900 = 25 mod 35

 No huge numbers and it’s efficient!

More Efficient RSA (2)
 Use e = 3 for all users (but not same N or d)

+ Public key operations only require 2 multiplies
o Private key operations remain expensive
- If M < N1/3 then C = Me = M3 and cube root attack
- For any M, if C1, C2, C3 sent to 3 users, cube root attack works

(uses Chinese Remainder Theorem)
 Can prevent cube root attack by padding message with

random bits
 Note: e = 216 + 1 also used (“better” than e = 3)

RSA in retrospect
 Currently RSA is the most widely used public crypto.
 Main uses are digital signature and key exchange.
 Currently 1024bits cannot be factored, but 2048 to 3076

bits are highly recommended for long-term security.
 Ingenuous implementation exposes several attacks.

Meticulous implementation is required.

Encrypting Large File with RSA?

 Duration of 1024-bit RSA encryption
o ~1 ms on 1 GHz Pentium

 Duration of 1024-bit RSA decryption
o ~10 ms on 1 GHz Pentium

 Duration to encrypt 1 Mbyte file?
o Encrypt 1024 bits / RSA operation = 128 bytes
o 1 Mbyte = 220 bytes
o Time: 220 / 27 * 1ms = 213 ms = 8 seconds!
o Compare with the time by the symmetric key?

Symmetric-key vs. public-key

 Symmetric crypto
o Need shared secret key
o 80 bit key for high security (year 2010)
o ~1,000,000 ops/s on 1GHz processor
o 10x speedup in HW

 Public-key crypto
o Need authentic public key
o 2048 bit key (RSA) for high security (year 2010)
o ~100 signatures/s

~1000 verify/s (RSA) on 1GHz processor
o Limited speedup in HW

Discrete Logarithmic problem
and

Diffie-Hellman key exchange

Cyclic Group

Suppose a cyclic group Z*11={1,2,3,…,10).

What happens if we compute 2x mod 11.

21 mod 11=2
22mod 11=4
23mod 11=8
24mod 11=5
25mod 11=10
26mod 11=9
27mod 11=7
28mod 11=3
29mod 11=6
210mod 11=1
211mod 11=2
212mod 11=4

Observation:
“2” generates all members of Z*11
at every 11th computation.

So, a=2 is called a generator of Z*11.

Discrete Logarithm Prob(DLP)

Given the finite cyclic group Zp* of order p-1 and a primitive element
g∈ Zp* and another element β ∈ Zp*.

The DLP is the problem of determining the integer x such that
1≤ x ≤p-1

gx = β mod p, i.e.,
x = loggβ mod p

In the previous example, 2x=3 mod 11, what is x?
5x = 41 mod 47, what is x?

D-H key exchange
Bob

Select b ∈{2,3,…,p-2}
(private to Bob)

Compute B= gb mod p
A

Alice
Select a ∈{2,3,…,p-2}

(private to Alice)
Compute A= ga mod p

KAB=Ba mod p = gab mod p

B

KAB = Ab mod p = gab mod p

p, g : public

Message x
Encrypt: Y=EKAB(x)

y Decrypt: x=DKAB(y)

Security of D-H
Suppose an attacker can only listen the

channel(passive attack).
o What can he know? g, p, A, B
o What does he want to know? KAB=gab mod p

One way of solving the problem is:
o Compute a = loggA mod p or b = loggB mod p

This computation is a very hard problem if p is
large enough.

Attacks against the DLP
o Goal: solve x = loggβ mod p
 g, β∈ Zp*, n=the number of elements of Zp*(cardinality of Zp*)

o Brute force attack requires O(n) steps.
o If this is the only possible attack, n≥280.
o But the Square-Root method can compute β √n steps.
o So, choose n=2160.
o In practice, p ≥21024

Encryption with DLP
Use the classic D-H key exchange algorithm.

Bob
Select b ∈{2,3,…,p-2}

(private to Bob)
Compute B= gb mod p

A

Alice
Select a ∈{2,3,…,p-2}

(private to Alice)
Compute A= ga mod p

KAB=Ba mod p = gab mod p
B

p, g : public

Message x
Encrypt: Y=x•KAB mod p

y Decrypt: x=y•KAB
-1 mod p

KAB = Ab mod p = gab mod p

Elgamal Encryption algorithm
Was published around 1985
Very similar to D-H, but the steps are reordered.

Bob
Select p, g∈{2,3,…,p-2}
K- = d∈{2,3,…,p-2}
K+ = β = gd mod p

(K+=β, g, p)

Alice

Select i ∈{2,3,…,p-2}
KE=gi mod p (ephemeral key)
KM= βi mod p (masking key)

Message x
Encrypt: Y=x•KM mod p (y, KE)

KM= KE
d mod p

Decrypt: x=y•KM
-1 mod p

Proof

Bob computes:

y KM
-1 = y(KE

d)-1

= x KM KE
-d

= x βi (gi)-d

= x (gd)i (gi)-d

= x

In Elgamal encryption, the public key(K+=β) is fixed, but i is
Chosen for each message. So, KE must be different for every plaintext.

Elliptic Curve Cryptography
(ECC)

What is an Elliptic Curve?
An elliptic curve E is the graph of an equation of

the form
y2 = x3 + ax + b

Also includes a “(imaginary) point at infinity”
What do elliptic curves look like?

Elliptic Curve Picture

 Consider elliptic curve
E: y2 = x3 - x + 1

 If P1 and P2 are on E, we can
define

P3 = P1 + P2
where + is a point addition
operator(not a vector operator).

 Point addition operator is all we
need

P1
P2

P3

x

y

Analytical expression for operator +

Given a EC, y2 = x3+ax+b, P1 = (x1, y1), P2 = (x2, y2), P3=(x3, y3)=?

Assume that the equation of a line passing through P1 and P2,
y = mx+c

Then, (mx+c)2 = x3+ax+b → 3 solutions: P1 , P2, and P3=(x3, y3)
x3 = m2-x1 -x2 mod p,
y3 = m(x1 –x3)-y1 mod p

where m

the (imaginary) point of infinity: ∞

We define a “point of infinity”, ∞ as

P + ∞ = P for all P on EC

What is the graphic interpretation of ∞?

P + (-P) = ∞ for all p

That is, -P of P(x, y) is by definition (x,-y).

Cyclic Group

Suppose the following EC: y2 = x3+2x+2 mod 17, and
a primitive point(generator) P=(5,1)

2P = P + P = (5,1) + (5,1) = (6,3)
3p = 2p + P = (10,6)
4p = (3,1)
5P = (9,16)
6P = (16,13)
7P = (0,6)
8P = (13,7)
9P = (7,6)
10P = (7,11)

11P = (13,10)
12p = (0,11)
13p = (16,4)
14P = (9,1)
15P = (3,16)
16P = (10,11)
17P = (6,14)
18P = (5,16)
19P = ∞
20P = (source: Understanding Cryptography)

These points on EC has the
cyclic group of the order
|E|=19.

Number of points on an EC
How many points can be on an arbitray EC?
Hasse’s Theorem”

o Given an elliptic curve module p, the number of points on
the curve is bounded by

p+1-2√p ≤ #E ≤ p+1+2√p
So, the number of point is close to p.
To generate a curve with about 2160 points, a prime of a

length of about 160 bits is required.

(source: Understanding Cryptography)

EC Discrete Logarithm Problem
Given an EC, we consider a primitive element p and

another point T on the curve. The DL problem is to
find the integer d, where 1 ≤ d ≤ |E|, such that

p + p + p + … + p =d•p = T

d times

EC DH Key Exchange and encryption
Bob

Select b ∈{2,3,…,|E|}
(private to Bob)

Compute B= bP =(xB, yB)
A

Alice

Select a ∈{2,3,…,|E|}
(private to Alice)

Compute A= aP =(xA, yA)

KAB= aB = abP = (xAB, yAB)

B

KAB = bA=abp =(xAB, yAB)

E: y2 = x3+ax+b, P= (xp, yp)

Message x
Encrypt: Y=EKAB(x)

y Decrypt: x=DKAB(y)

ECC Security
 Practical parameter size for ECC

o p with 160 bits (roughly 160 points on the curve)
provides 280 steps that are required by an attacker.

 Why smaller for ECC (160-256bits) than for RSA(1024-
3072bits)?
o Attacks on ECC are weaker than those on the integer factoring or

integer DL.
 For this reason, ECC slowly becomes popular on many

applications, especially on embedded platforms such as
mobile devices.

Comparison of Security level

Algorithm
family

cryptosystem Security level(bits)
80 128 192 256

Integer
factoring

RSA 1024 3072 7680 15360

Discrete
logarithm

DH, DSA,
Elgamal

1024 3072 7680 15360

Elliptic curve ECDH, ECDSA 160 256 384 512
Symmetric
key

AES, 3DES 80 128 192 256

(source: Understanding Cryptography)

